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A Completely Theoretical Design Method of
Dielectric Image Guide Gratings in the
Bragg Reflection Region

HIROSHI SHIGESAWA, SENIOR MEMBER, IEEE, AND MIKIO TSUJI, MEMBER, IEEE

Abstract —This paper presents a new and completely theoretical accu-
rate method for the design of dielectric image guide gratings. Our method
is based on a network approach that can easily analyze, with satisfactory
approximations, the interaction of dielectric step discontinuities. These are
the fundamental constituents of our gratings. Measurements on a filter
modeled at X-band show excellent agreement with the design characteris-
tics.

I. INTRODUCTION

IGNIFICANT PROGRESS has been made recently in

millimeter wave technology, much of that is largely on
extension of microwave techniques. As for the waveguide
structures for integrated circuit use, printed-line type wave-
guides such as microstrip line and finline have produced
much success in circuitries and subsystems.

For the shorter millimeter wavelengths, however, the
smaller structure sizes and higher metal losses make those
structures no longer practical, and new structures and
techniques must be investigated. One of alternatives to
printed-line type millimeter-wave integrated circuits will be
dielectric waveguide structures [1]-[3]. However, relatively
little has been investigated on procedures for designing
practical circuitries utilizing such a waveguide.

One of exceptions is in the work of Matthaei er al. [4],
which presented a method for the design of dielectric
image guide (DIG) gratings. Matthaei and his coworkers
also applied their method to obtain some DIG filters [5].
We investigate here the DIG gratings that are similar to
theirs. Their method is based on a combination of ap-
proximate theory and measurements on trial gratings. Al-
though it seems simple, the requirement of experimental
data in the numerical design stage is a serious disad-
vantage.

On the contrary, our method presented here is a com-
pletely theoretical one that needs no experimental data and
is based on the analysis of dielectric step discontinuities
and their cascaded connection. The general idea of our
method has been extensively discussed in relation to the
step discontinuity problem in open dielectric waveguides
and its application to any kinds of periodic structure with
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finite length [6]-[9]. The discontinuity problems of isolated
steps have been discussed in [6] by accurately taking account
of both surface-wave modes and the waves with continuous
spectrum. An effective microwave network representation
has been derived for a step discontinuity including radia-
tion phenomena in {7]. Afterwards, such a network ap-
proach has been successfully applied to periodic structures
with finite length, operating not only in their stop bands
[8], but also in a different regime of operation correspond-
ing to the leaky wave region [9].

The works mentioned above have clearly shown that in
so far as the first Bragg reflection region is used, the energy
carried away by the continuous waves is negligible and we
may consider only surface-wave ports in the equivalent
network representation. This validity has been successfully
demonstrated in our previous paper [10] in the case of
gratings on an H-guide. The method presented here has a
great theoretical advance in enabling the design of gratings
on three-dimensional (3-D) dielectric waveguides of an
open type.

II. PROPAGATION CONSTANT AND JUNCTION
DisconTiNUITY OF DIG

The DIG structure investigated here is depicted in Fig.
1, which is similar with Fig. 2(a) of [4]. The periodic
rectangular corrugations or notches are put on the sides of
the guide within the limits of a finite length along the guide
axis (the z-axis).

Although a uniform DIG along the z-axis supports
hybrid modes with all six field components, we may often
classify the modes into two approximate groups: one is the
E?} . mode group, for which the E field is predominantly
vertically polarized in the y-direction, while the other is the
E;, mode group, for which the E field is predominantly
horizontally polarized in the x-direction. As discussed in
[11], the use of corrugations as in Fig. 1 is decidedly
superior to the corrugations put on top of DIG insofar as
the lowest order E{; mode is concerned. As seen from Fig.
1, this structure can be viewed as consisting of many
dielectric step discontinuities connected by a length of
uniform DIG. For realizing a completely theoretical design
of DIG gratings, it is necessary to derive an equivalent
network characterizing a step discontinuity between two
DIG’s with different cross-sectional dimensions, and also
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Fig. 1. Dielectric image guide gratings consisting of a finite length of

periodic corrugations or notches.

to calculate accurately the propagation constant in each
DIG. In the following two subsections, these problems will
be discussed separately.

A.- Propagation Constant and Field Distribution of Dielectric
Image Guides .

Fig. 2 shows the cross section of the ith DIG (i=1or II,
dielectric dimension is w;, X h and its refractive index is
n,). We assume the refractive index of the outside air
region to be n, =1 and indicate the boundary contour of
DIG by I.

We f1rst expand the electromagnetic fields of the Ey;
mode into a series of circular harmonics, as Goell did [12],
as follows. :

Dielectric Region:

= %A;Jm(pir)sin(mﬁ) (1)
hiy=2B,J,(p;r)cos(mb) (2)

Air Region: " |
=2 CoK,u(x;r)sin(m8) 3)
hiy= gD K,,(x,;r)cos(mb) (4)

where the exponential dependence exp j(w? — B;z) is ab-
breviated and the transverse propagation constants are

(guide i) I
P(r,8)

.
r4
7577/metl plane

Fig. 2. Cross-sectional view of DIG and the coordinate system.

integration of (6) along

. given by

pi= ("1k0)2‘ B?

kP =87~ (5)
where k2= w?p€, The J, and K, are the mth order
Bessel functions and modified Bessel functions, respec-
tively. The r and 6 components of the field can then be
obtained by substituting (1) and (2) or (3) and (4) into
Maxwell’s equations. It should be noted that the integer m
is always odd (2n—1), (n=1,2, - - -) because of the sym-
metry of the E, component of the Ef; mode with respect
to the y—z plane at x = 0.

The propagation constant is obtained by considering the
boundary condition on the boundary contour I, that is,
nX(el—el)=0and nX(h} - ‘) 0 (n is the unit vec-
tor normal to both I; and the z axis: e and ) are the total
electric and magnetic fields). However, the infinite series in
(1)—(4) should be truncated to a finite number of terms M
in practical calculations. Such approximated fields never
satisfy the above type of boundary conditions. We there-
fore fit the approximated fields to this boundary condition
in the sense of least-squares [13], instead of the point
matching method [12]. For this purpose, we define the
mean-square error gr, in the boundary condition by the
following equation:

gr,:fri{|n><( ei—ed) [+ Z2|n x (i — 1) [} s

+g(Air—1)+ £4(4-1) (6)

where Z, an arbitrary impedance parameter, is not uniquely
defined, and the intrinsic impedance of the dielectric re-
gion, Z, =\/p,/nie,, is used as Z in the following calcula-
tions. £ means a Lagrange multiplier and * indicates the
complex conjugate. As mentioned before, there is a symme-
try in the E} mode field, and we have only to do the
I, in the first quadrant. After
performing the integration of (6), we obtain the error g as
a function of both the modal coefficients and £, which are
solved by applying the Ritz—Galerkin variational approach
to gr. This results in the relation gp,=—¢, and the
propagation constant f, can be obtained by mmlmmng
this £ [14].
Table I shows an example of calculated B; for DIG’s of
polyethylene (n; =1.52) with different w; /A, values (A, =

TABLE1
CONVERGENCE PROPERTY OF PROPAGATION CONSTANT

N Bilko Balky

.253
.251
252
252
.252
.262
.252

1.319
1.314
1.316
1.316
1.316
1.317
1.317

® O g s W N
[ T

Note: (ny =152, guide I: w,/Ao=0633, h/\;=04, guide IL

wy /Ao = 0433, and h /A, = 0.4).
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free space wavelength). N (= (M +1)/2) means the num-
ber of expansion terms in (1)—(4). It is clear that the
propagation constants for both DIG’s almost converge for
N >7. Thus N=9 is used in the following calculations,
unless a DIG has extremely large or small w, /& value.

B. Junction of Two DIG’s with Different Cross-Sectional
Dimensions

The junction discontinuity that we are concerned with
here is depicted in Fig. 3. The guide I has the width w; and
the guide II has the width w, ( < w,); both guides have the
same height 4 and are connected at z = 0, symmetrically in
the x — y plane. It is assumed that both DIG’s support only
the E}, mode and produce negligible radiation losses at
their junction. Thus, only the fields of the lowest-order
mode are assumed in each section of guide, and the junc-
tion reflection and transmission coefficients are adjusted to
optimize the match of the field at the step junction.

For the mode incidence from the guide I, let the ampli-
tude reflection and transmission coefficients be R;; and
T,,, which make it possible to write the tangential compo-
nents to the x—y plane at z =0 as follows:

= (14 Ryy)el Han=(1—Ru)h£U-

nJ?

EII Tel! HI =T, AL,

n/? nJ?

(n=rorf, j=1or2). (7)

In (7), the following normalization in each guide (i =1 or
IT) should be considered:

j{-:l /Sj ( K

where the integration area S, covers the cross-sectional
area of a guide, while the area §, covers the outside of it.

For solving R;; and T,, through the continuity condi-
tion of fields at the junction plane of two DIG’s, we again
define the mean-square error g, in the continuity condition
by the following equation:

[t

ki, — epht;) ds =1 (8)

B0 e [ lx(n ) s
+
El /ijzoxhﬂzds
©)

Fig. 3. Stepwise junction discontinuity of two differently sized DIG’s.
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Fig. 4. Junction discontinuity plane and the division of its area for
approximating the integrations in (9).

TABLE 11
CONVERGENCE PROPERTY OF THE SCATTERING MATRIX ON THE
INTEGRATION AREA
m,. Si1 ) S22
2 0.046070 -0.044875
5 0.046141 -0.045039
10 0.046141 -0.045039

Note: (n; =1.52, w, /Ay =0.633, w, /Ao = 0.433, and & /A, = 0.4).

where z, means the unit vector to the z direction. As will
be discussed below, the integration area S of the numer-
ator is approximated by a limited one in the x—y plane in
practical calculations. Then we have to choose » and p
correspondingly properly to j=1 or 2. Thus, R;; and T,
can be solved by minimizing the error g, with respect to
these unknows.

Following the same method, R,, and 7;, can be ob-
tained by considering the E, mode incidence from the
guide II. These R,, and 7,, (p, ¢=1, 2) result in the

- scattering matrix with 2X2 elements characterizing the

junction discontinuity, which is often transformed into
the transmission matrix for ease of calculations in cascaded
connection of discontinuities. :
Now, the problem remaining is to approximate the in-
tegration area S of the numerator in (9). We divide the
whole junction plane into four regions, as shown in Fig. 4:
region A is the area inside the inscribed circle with the
radius 7, to the guide II; region B is the area lying
between r,;, and the circumcircle with the radius r,, to
the guide I; region C is the area lying between r,,,, and an
arbitrary radius m,-r,, (m, a constant larger than unity);
and the rest outside m,-r,,,, is disregarded here by taking
into account the convergence of solutions with respect to
m,. According to this division of S, we may perform the
integrations analytically with respect to 6 and numerically
with respect to » in both regions 4 and C, while the
integrations are numerically performed with respect to
both r and @ in region B. This approach is superior, from
the viewpoint of numerical accuracy, to the full numerical
integrations inside the circle of the radius m,-r,,,. Table I
shows an example of the convergence check for the ele-
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Fig. 5. DIG gratings consisting of a finite length of corrugations. T, (n) means the transmission matrix-of the nth unit
cell. )

ments S;; and S, of a scattering matrix as a multiplier m,
is varied. It is clear that the solutions barely converge at
m, =135, and, hereafter, m, =10 is considered for satisfac-
tory calculations.

III. ANALYTICAL AND EXPERIMENTAL DISCUSSIONS
ON DIG GRATINGS WITH A FINITE LENGTH

As shown in Fig. 1, a DIG grating with a finite length
can be viewed as consisting of a finite number of step
junctions connected by lengths of uniform DIG. The prop-
* agation characteristics are then analyzed by a cascaded
connection of the transmission matrices of both the junc-
tion discontinuity (7, for the nth junction) and the uni-
form DIG (T, for the nth DIG). Such an approximate
approach is valid as far as the first Bragg reflection region
is concerned as mentioned before. Using the matrices
denoted above, one can define a unit cell corresponding to
one period of the structure, of which the matrix can be
denoted as T, ., (n)=1T,, 1Ty, 1T, T)5,, as shown in
Fig. 5. Then, the transmission matrix 7, for the finite

periodic grating consisting of N, unit cells can be given as

follows:

N,
o= 1 Tu(0). (10)

This T, easily leads to the reflection and transmission
coefficients for the structure shown in Fig, 5, in case of the
E{) mode incidence from one side of the structure. The
above approach holds the key of development of a com-
pletely theoretical design method for DIG gratings, as
shown in the next section.

Before discussing the details of our design method, it is
important to confirm the validity of the approach men-
tioned above.

701 \
AN — Present Method
~601 N ® Measured
a AN ~-=EDC Method
»< 50F AN
4ok . Ne=
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Fig. 6. Comparison between numerical and experimental results of the
mid-stopband attenuation A,,,, for varying w,.

To this end, the mid-stopband attenuation A, is dis-
cussed numerically and experimentaily for the DIG grat-
ings, made of polyethylene (n;=1.52), with h =
12 mm, w; =19 mm, d =12 mm, and d,/d, =1}, with
varying w, % and N,. Fig. 6 shows the results obtained in a
10-GHz region, where the solid curves indicate the numeri-
cal results of A4, calculated by the present method for-
N,=30 and N_ =50, and the dotted curves show the
results obtained by the method suggested by Matthaei
et al. in [4] that use the approximate equations based on
the effective dielectric constant (EDC) method. On the

! Considering the dispersion characteristic of §; in relation to the guide
width, the condition d; /d, =1 is slightly away from that producing the
maximum attenuation. However, as will be shown later, the resultant
decrease in attenuation is negligible, and d,; /d, =1 will be a good
approximation.

21t should be noted that the stopband center (the first Bragg) frequency
is slightly changed with varying w, because of a constant period d.
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Fig. 7. (a) Frequency characteristics of the DIG gratings with shallow

notch (/1 =12mm, w; =19mm, w, =13mm, d =12mm, and 4, /d, =1).
(b) Frequency characteristics of the DIG gratings with deep notch
(h=12mm, w; =19mm, w, = 9mm, d =12mm, d; /d, =1).

other hand, the dots indicate the measured values, and it is
confirmed that our results agree surprisingly well with the
measured ones even for the deep notch range with large w,
{(wy/w, =2 or more).

Fig. 7(a) and (b) show the frequency characteristics for
the gratings (w; =19 mm, N, = 50) with the shallow notch
(w, =12 mm) and the deep notch (w,=9 mm). These
examples show good agreement between the theoretical
and the experimental values. As a result of these discus-
sions, we may proceed to the next stage: the development
of a design procedure based on the present method.

IV. DzsiGN CONSIDERATION OF DIG GRATINGS

A. Design Procedures

As seen from Fig. 1, DIG gratings have many variables
to fit the characteristics to the given specifications, and this
paper makes the refractive index n; and N, constant and
assumes h = aw; (a, an arbitrary constant). Here, we de-
note the specified stopband center frequency and the re-
quired mid-stopband attenuation by f, (the corresponding
free space wavelength is A,) and A4 _,,, respectively, and
use the normalized dimensions like H=h /A, and W,=
w, /Ay (i=1, 2).

We first calculate the dispersion curves as a function of
W, with parameter a, from which the possible pairs of W,
and H are obtained by considering that such a guide can
support only the E{; mode in the required bandwidth. For
each pair of (W;, H), the procedure of Section II-B makes
it possible to calculate the scattering matrix of a junction
of two DIG’s as a function of W, /W,. On the other hand,
a given DIG grating shows the maximum attenuation when
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Fig. 8. Design chart of DIG gratings (the relation between W, and W,

for a given specifications).

each guide length d, (see Fig. 1) coincides with the (guide
wavelength / 4) at f = f7. Therefore, the grating design
completes when the ratio W, /W, is defined in order for
A ax to satisfy the required value. Of course, this 4, ,, can
be calculated by the cascaded connection of a finite num-
ber (N.) of transmission matrices consisting of the junction
matrices and uniform waveguide matrices at f = f,,.

One of the important parameters for expressing grating
characteristics is the fractional 3-dB bandwidth Af/f, (3-
dB bandwidth below 4_, ). This parameter, however, is
fixed uniquely through the defined structural dimensions,
and here the bandwidth is numerically obtained after the
calculation of the insertion characteristics. Since the field
distributions in the plane transverse to the z-axis varies
from frequency to frequency in 3-D dielectric waveguides
of the open type, following the method presented in Sec-
tion II-B for all the frequencies in the stopband consumes
much time in the above calculations. To reduce consuming
time, we calculate here the insertion losses by using the
dispersion curve obtained by the EDC method for all the
frequencies in the stopband except the center frequency f,.
It has been confirmed that this approximation in obtaining
the propagation constants produces no significant dif-
ference in results insofar as we take account of a com-
pensation in which the EDC propagation constant f, varies
with frequency proportionally to the way that our theoreti-
cal one varies in f;, and its vicinity (Matthaei er al. [4] used
a similar approach employing the “measured” value in-
stead of our “theoretical” value).

Following the procedures mentioned above, a CAD pro-
gram has been successfully developed. In this section,
however, we show the design charts of the DIG gratings
obtained from that program. An example (H= 0.6/,
n;=1.52, N,=50) is shown in Fig. 8, where the solid

3Since the present method considers only the surface-wave modes, we
neglect here the effect of junction reactances due to the stored energy
around a junction.
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Fig. 9. Design chart of DIG gratings. This chart is used along with Fig,
8 that defines the necessary H and W for uniform guide section, from
which 7 is obtained (the points 4 and B define the necessary n.4’s
that realize the specifications given by the circle on Fig. 8).

curves indicate the contours of the required maximum
attenuation A4, . (dB) in the W,—W, /W, plane and the
dotted curves show the corresponding Af/f; in percent. In
the hatched region, the next higher-order propagating mode
E3 can couple with the E}; mode in the present structure,
and it is desirable to set the mid-stopband frequency away
from this region unless the additional stopbands due to
mode coupling {15] are considered positively.

Fig. 9 shows the dependence of the equivalent refractive
index n. = B/k, on both the guide width W and the
height H. Therefore, knowing, from Fig. 8, the guide
widths W, and W, that satisfy the given grating specifica-
tions, one can obtain n., corresponding to each W, from
Fig. 9. This n, finally defines the length d; of each DIG
as follows:

d1=>‘0’(4neffz)_1’ i=1,2.

(11)
B. Design Example and Experiments
Let us consider here the following specifications:
fo=10 GHz (Ao =30 mm)
A ox =30 dB
Af/f,=1.92 percent

and design the DIG grating by using Figs. 8 and 9. These
specifications can be realized by the point (W, W, /W)
indicated by the small circle on Fig. 8, ie., W, = 0.667,
W, /W, =0.525 and H = 04, thereby yielding w; = 20 mm,
wy, =10.5 mm, and % =12 mm. On the other hand, the
points A(W,, H) and B(W,, H) on Fig. 9 derive n =
1.318 and n., =1.204, respectively, thereby resulting in
d;=5.69 mm and d,=6.23 mm from (11). The grating
design has now been finished. In the above case, the
higher-order EJ}, mode begins to propagate in the DIG
with W, from about 11 GHz.

425

1.0¢

Amax /opt Amax
o
o

o 05 10
d./d

Fig. 10. Dependence of the maximum attenuation A, on d,/d (h=
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0
310 r 50 corrugations
c
220} Experiment
g
2 N Theory
%30 | Ef mode

4O , . . \ , , . ,

92 94 96 98 100 102 104 106 108 110
Frequency (GHz)
Fig. 11. Design characteristic of the DIG grating and its measured

frequency characteristic (h=12mm, w;=20mm, w, =105mm, d=
12mm, and d, /d, =1).

It is worthwhile to discuss here the change in 4,,,, when
there are some deviations in d, from the designed values.
Fig. 10 is a result of the dependence of A,,, to d, /d with
the constant d;. In this case, the center frequency varies
slightly. Fig. 10 shows that the =+ 5-percent deviations in
d, /d from the optimally designed value (0.523) produce a
reduction of only 1 percent or less in 4,,,. Considering
the above, we have designed a trial grating with d,=d, =
6 mm, thereby yielding d, /d = 0.5, which has a negligible
4-percent reduction from the optimum value and also shifts
the center frequency to f, = 9.97 GHz.

Fig. 11 shows the attenuation characteristics of the de-
signed trial grating with N, = 50. The solid curve indicates
the measured characteristic and the dotted curve indicates
the theoretical one calculated from the designed parame-
ters. The measured center frequency, maximum attenua-
tion, and the fractional 3-dB bandwidth all show the
excellent agreement with the theory. Also, a surprisingly
good agreement between both curves can be found over the
whole frequency range of the stopband. However, we also
see a slight difference at the frequencies around the first
zero of insertion loss appearing on both sides of f;,. The
authors currently have no definitive and reasonable way of
explaining this difference.
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V.  CONCLUSIONS

A new and completely theoretical accurate method for
the design of dielectric image guide (DIG) gratings has
been presented. This method consists of two important
stages: one is the stage to calculate the dispersion char-
acteristics of DIG accurately and the other is one to derive
the scattering matrix at the junctions of two different sized
DIG’s completely theoretically. Although the method is
approximate since it takes into account only guided
surface-wave modes, the effectiveness of the present design
procedure has been demonstrated. We are currently study-
ing the design of more practical grating filters using the
present method.
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