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A Completely Theoretical Design Method of
Dielectric Image Guide Gratings in the

Bragg Reflection Region

HIROSHI SHIGESAWA, SENIOR MEMBER, IEEE, AND MIKIO TSUJI, MEMBER, IEEE

Absiract — This paper presents a new and completely theoretical accu-

rate method for the design of dlelectic image guide gratings. Our method

is based on a network approach that can easily anafyze, with satisfactory

approximations. tbe interaction of dielectric step discontinuities. These are

the fundamental constituents of our gratings. Measurements on a filter

modeled at X-band show excellent agreement with the design characteris-

tics.

1. INTRODUCTION

s

IGNIFICANT PROGRESS has been made recently in

millimeter wave technology, much of that is largely on

extension of microwave techniques. As for the waveguide

structures for integrated circuit use, printed-line type wave-

guides such as microstrip line and finline have produced

much success in circuitries and subsystems.

For the shorter millimeter wavelengths, however, the

smaller structure sizes and higher metal losses make those

structures no longer practical, and new structures and

techniques must be investigated. One of alternatives to

printed-line type millimeter-wave integrated circuits will be

dielectric waveguide structures [1]-[3]1. However, relatively

little has been investigated on procedures for designing

practical circuitries utilizing such a waveguide.

One of exceptions is in the work of Matthaei et al. [4],

which presented a method for the design of dielectric

image guide (DIG) gratings. Matthaei and his coworkers

also applied their method to obtain some DIG filters [5].

We investigate here the DIG gratings that are similar to

theirs. Their method is based on a combination of ap-

proximate theory and measurements cm trial gratings. Al-

though it seems simple, the requirement of experimental

data in the numerical design stage is a serious disad-

vantage.

On the contrary, our method presented here is a com-

pletely theoretical one that needs no experimental data and

is based on the analysis of dielectric step discontinuities

and their cascaded connection. The general idea of our

method has been extensively discussed in relation to the

step discontinuity problem in open dielectric waveguides

and its application to any kinds of periodic structure with
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finite length [6]-[9]. The discontinuity problems of isolated

steps have been discussed in [6] by accurately taking account

of both surface-wave modes and the waves with continuous

spectrum. An effective microwave network representation

has been derived for a step discontinuity including radia-

tion phenomena in [7]. Afterwards, such a network ap-

proach has been successfully applied to periodic structures

with finite length, operating not only in their stop bands

[8], but also in a different regime of operation correspond-

ing to the leaky wave region [9].

The works mentioned above have clearly shown that in

so far as the first Bragg reflection region is used, the energy

carried away by the continuous waves is negligible and we

may consider only surface-wave ports in the equivalent

network representation. This validity has been successfully

demonstrated in our previous paper [10] in the case of

gratings on an H-guide. The method presented here has a

great theoretical advance in enabling the design of gratings

on three-dimensional (3-D) dielectric waveguides of an

open type.

II. PROPAGATION CONSTANT AND JUNCTION

DISCONTINUITY OF DIG

The DIG structure investigated here is depicted in Fig.

1, which is similar with Fig. 2(a) of [4]. The periodic

rectangular corrugations or notches are put on the sides of

the guide within the limits of a finite length along the guide

axis (the z-axis).

Although a uniform DIG along the z-axis supports

hybrid modes with all six field components, we may often

classify the modes into two approximate groups: one is the

E~~ mode group, for which the E field is predominantly

vertically polarized in the y-direction, while the other is the

E~n mode group, for which the E field is predominantly

horizontally polarized in the x-direction. As discussed in
[11], the use of corrugations as in Fig. 1 is decidedly

superior to the corrugations put on top of DIG insofar as

the lowest order E:l mode is concerned. As seen from Fig.

1, this structure can be viewed as consisting of many

dielectric step discontinuities connected by a length of

uniform DIG. For realizing a completely theoretical design

of DIG gratings, it is necessary to derive an equivalent

network characterizing a step discontinuity between two

DIG’s with different cross-sectional dimensions, and also
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given by

p;= (nlko)z– B:

K;= fl; -k; (5)

where k; = tJ2p ~c~. The J~ and KM. are the m th order

Bessel functions and modified Bessel functions, respec-

tively. The r and O components of the field can then be

obtained by substituting (1) and (2) or (3) and (4) into

Maxwell’s equations. It should be noted that the integer m

is always odd (2n – 1), (n =1,2, . ;. ) because of the sym-

metry of the Ey component of the E{l mode with respect

to the y–z plane at x = O.

The propagation constant is obtained by considering the

boundary condition on the boundary contour I’i, that is,

n X(e;– ej) = O and n x(h~– hj) = O (n is the unit vec-

tor normal to both I’i and the z axis: e and Ij are the total

Fig. 1. Dielectric image guide gratings consisting of a finite length of electric and magnetic fields). However, the infinite series in

periodic corrugations or notches, (l)-(4) should be truncated to a finite number of terms M

to calculate accurately the propagation constant in each

DIG. In the following two subsections, these problems will

be discussed separately.

A. Propagation Constant and Field Distribution of Dielectric

Image Guides ~

Fig. 2 shows the cross section of the ith DIG (i = I or II,

dielectric dimension is Wi X h and its refractive index is

n ~). We assume the refractive index of the outside air

region to be n ~ = 1 and indicate the boundary contour of

DIG by ri.
We first expand the electromagnetic fields of the E{’

mode into a series of circular harmonics, as Goell did [12],

as follows.

Dielectric Region:

e~l = ~A;J~(pir)sin(mO) (1)

m

h:l=~B&Jm(pir)cos( m6) (2)
m

Air Region:

eL = XCX~(K,r)sin(me) (3)
m

h~2= ~D~Km(Kir)COS(md) (4)
m

where the exponential dependence exp j( at – ~iz ) is ab-

breviated and the transverse propagation constants are

Y

(guide i )
1

k--w+
~P(r,e)

x
e

in practical calculations. Such approximated fields never

satisfy the above type of boundary conditions. We there-

fore fit the approximated fields to this boundary condition

in the sense of least-squares [13], instead of the point

matching method [12]. For this purpose, we define the

mean-square error gri in the boundary condition by the

following equation:

gri=jr(lnx(ei-e~)12+ Z21nx(hj-hj)12}ds

+&( A&l)+ &*( A;-1) (6)

where Z, an arbitrary impedance parameter, ii not uniquely

defined, and the intrinsic impedance of the dielectric re-

rgion, 21= p ~/nlcO, is used as Z in the following calcula-

tions. ~ means a Lagrange multiplier and * indicates the

complex conjugate. As mentioned before, there is a symme-

try in the E/’l mode field, and we have only to do the

integration of (6) along ri in the first quadrant. After

performing the integration of (6), we obtain the error gr, as

a function of both the modal coefficients and $, which are

solved by applying the Ritz-Galerkin variational approach
to g,. “His results in the relation gr, = – 6, and the

propagation constant ~i can be obtained by minimizing

this f [14].

Table I shows an example of calculated pi for DICFS of

polyethylene (nl = 1.52) with different Wz/A ~ values (~ ~ =

TABLE I

CONVERGENCE PROPERTY OF PROPAGATION CONSTANT

N B,/k, B*/k,

2 1.319 1.253

3 1.314 1.251

4 1.316 1.252

5 1.316 1.252

6 1.316 1.252

7 1.317 1.252

8 1.317 1.252

Note: (n, =1.52, guide 1: wl/AO = 0.633, h/L. = 0.4, guide II:
Fig. 2. Cross-sectional view of DIG and the coordinate system. W2/~o = 0~433, and h/A. = 0.4),
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free space wavelength). N ( = (i&f+ 1)/2) means the num-

ber of expansion terms in (l)-(4). It is clear that the

propagation constants for both DIG’s almost converge for

N >7. Thus N = 9 is used in the following calculations,

unless a DIG has extremely large or small Wi/h value.

B. Junction of Two DIG’s with D~ferent Cross-Sectional

Dimensions

The junction discontinuity that we are concerned with

here is depicted in Fig. 3. The guide I has the width WI and

the guide II has the width Wz ( < Wl); both guides have the

same height h and are connected at z = O, symmetrically in

the x – y plane. It is assumed that both DIGs support only

the EL mode and produce negligible radiation losses at

their junction. Thus, only the fields of the lowest-order

mode are assumed in each section of guide, and the junc-

tion reflection and transmission coefficients are adjusted to

optimize the match of the field at the step junction.

For the mode incidence from the guide I, let the ampli-

tude reflection and transmission coefficients be Rll and

TJ1, which make it possible to write the tangential compo-

nents to the x – y plane at z = O as follows:

E~j = (1+ Rll)e~j, H~j= (1– l?ll)h~j

E1l = Tzle~.,
7J

H;; = Tzlh;j ,

(q=ror O, j=lor2). (7)

In (7), the following normalization in each guide (i= I or

II) should be considered:

where the integration area SI covers the cross-sectional

area of a guide, while the area S2 covers the outside of it.

For solving Rll and TZ1 through the continuity condi-

tion of fields at the junction plane of two DIGs, we again

define the mean-square error gf in the continuity condition

by the following equation:

(9)

Fig. 3, Stepwise junction discontinuity of two differently sized DIGs.
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Fig. 4. Junction discontinuity plane and the division of its area

approximating the integrations in (9).

TABLE II

CONVERGENCE PROPERTY OF THE SCATTERING MATRIX ON THE

INTEGRATION AREA

mr Sll S**

2 0.046070 -0.044875

5 0.046141 -0.045039

10 0.046141 -0.045039

for

Note: (nl = 1.52, wl/XO = 0.633, w2/X0 = 0.433, and h/AO = 0.4).

where z, means the unit vector to the z direction. As will

be discussed below, the integration area S of the numer-

ator is approximated by a limited one in the x – y plane in

practical calculations. Then we have to choose v and p

correspondingly properly to j = 1 or 2. Thus, R1l and T21

can be solved by minimizing the error g, with respect to

these unknows.

Following the same method, R 22 and T12 can be ob-

tained by considering the E/’l mode incidence from the

guide II. These RPP and TPq (p, q =1, 2) result in the

scattering matrix with 2 x 2 elements characterizing the

junction discontinuity, which is often transformed into

the transmission matrix for ease of calculations in cascaded

connection of discontinuities.

Now, the problem remaining is to approximate the in-

tegration area S of the numerator in (9). We divide the

whole junction plane into four regions, as shown in Fig. 4:

region A is the area inside the inscribed circle with the

radius rmin to the guide II; region B is the area lying
between rmin and the circumcircle with the radius r~= to

the guide I; region C is the area lying between r~= and an
arbitrary radius m,. r~= (m. a constant larger than unity);

and the rest outside m,. r~= is disregarded here by taking

into account the convergence of solutions with respect to

m,. According to this division of S, we may perform the

integrations analytically with respect to 9 and numerically

with respect to r in both regions A and C, while the

integrations are numerically performed with respect to

both r and 6 in region B. This approach is superior, from

the viewpoint of numerical accuracy, to the full numerical

integrations inside the circle of the radius m,. r~=. Table II

shows an example of the convergence check for the ele-
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Fig. 5 DIG gratings consisting of a finite length of corrugations. Tunit (n) means the transmission matrix of the n th unit
cell.

ments Sll and S22 of a scattering matrix as a multiplier m,

is varied. It is clear that the solutions barely converge at

m, = 5, and, hereafter, m, =10 is considered for satisfac-

tory calculations.

111. ANALYTICAL AND EXPERIMENTAL DISCUSSIONS

ON DIG GRATINGS WITH A FINITE LENGTH

As shown in Fig. 1, a DIG grating with a finite length

can be viewed as consisting of a finite number of step

junctions connected by lengths of uniform DIG. The prop-

agation characteristics are then analyzed by a cascaded

connection of the transmission matrices of both the junc-

tion discontinuity (TH for the n th junction) and the uni-

form DIG (Tl~ for the n th DIG). Such an approximate

approach is valid as far as the first Bragg reflection region

is concerned as mentioned before. Using the matrices

denoted above, one can define a unit cell corresponding to

one period of the structure, of which the matrix can be

denoted as TutiL(n) = Tzn_l. T,2. _l. Tz~.T[zm, as shown in

Fig. 5. Then, the transmission matrix T,O,d for the finite

periodic grating consisting of NC unit cells can be given as

follows :

,Otd= fi TUN,(n).T (lo)

This T,Otal easily leads to the reflection and transmission

coefficients for the structure shown in Fig. 5, in case of the
E~l mode incidence from one side of the structure. The
above approach holds the key of development of a com-

pletely theoretical design method for DIG gratings, as

“shown in the next section.
Before discussing the details of our design method, it is

important to confirm the validity of the approach men-

tioned above.
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Fig. 6. Comparison between numerical and experimental results of the

mid-stopband attenuation A ~m for varying W2.

To this end, the mid-stopband attenuation A ~= is dis-

cussed numerically and experimentally for the DIG grat-

ings, made of polyethylene (n ~ = 1.52), with h =

12 mm, WI =19 mm, d =12 mm, and dl/dz =11, with

varying W2 2 and NC. Fig. 6 shows the results obtainedl in a

1O-GHZ region, where the solid curves indicate the numeri-

cal results of ~ ~= calculated by the present method for

NC= 30 and NC= 50, and the dotted curves show the

results obtained by the method suggested by Matthaei

et al. in [4] that use the approximate equations based on

the effective dielectric constant (EDC) method. On the

1Considering the dispersion characteristic of ~, in relation to the guide
width, the condition dl /dz = 1 is slightly away from that producing the
maximum attenuation. However, as will be shown later, the resultant
decrease in attenuation is negligible, and dl /dz = 1 will be a good
approximation.

2 It should be noted that the stopband center (the first Bragg) freqpency
is slightly changed with varying W2 because of a constant period d.
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Fig, 7. (a) Frequency characteristics of the DIG gratings with shallow

notch (h=12mm, wl=19mm, w2=13mm, d=12mm, and dl/d2= l).

(b) Frequency characteristics of the DIG gratings with deep notch

(h= 12mm, WI= 19mm, W2= 9mm, d =K?mm, dl/d2 =1).

other hand, the dots indicate the measured values, and it is

confirmed that our results agree surprisingly well with the

measured ones even for the deep notch range with large Wz

(wl/w2 = 2 or more).

Fig. 7(a) and (b) show the frequency characteristics for

the gratings (WI =19 mm, NC= 50) with the shallow notch

(W2 = 12 mm) and the deep notch (W2 = 9 mm). These

examples show good agreement between the theoretical

and the experimental values. As a result of these discus-

sions, we may proceed to the next stage: the development

of a design procedure based on the present method.

IV. DESIGN CONSIDERATION OF DIG GRATINGS

A. Design Procedures

As seen from Fig. 1, DIG gratings have many variables

to fit the characteristics to the given specifications, and this

paper makes the refractive index nl and NC constant and

assumes h = awl (a, an arbitrary constant). Here, we de-
note the specified stopband center frequency and the re-

quired mid-stopband attenuation by ~0 (the corresponding

free space wavelength is A ~) and ~~=, respectively, and

use the normalized dimensions like H = h/A ~ and W, =

wz/AO (i =1, 2).

We first calculate the dispersion curves as a function of

WI with parameter a, from which the possible pairs of WI

and H are obtained by considering that such a guide can

support only the E{l mode in the required bandwidth. For

each pair of (WI, H), the procedure of Section II-B makes

it possible to calculate the scattering matrix of a junction

of two DIGs as a function of Wz / WI. On the other hand,

a given DIG grating shows the maximum attenuation when

o

0

3
-.
3

0

0

.-. >, H.06W,, Nc.50, n,.152

0.6 07 08 09
W,=W,IAO

Fig. 8. Design chart of DIG gratings (the relation between WI
for a given specifications).

and W2

each guide length d, (see Fig. 1) coincides with the (guide

wavelength / 4) at ~ = ~~. Therefore, the grating design

completes when the ratio Wz/ WI is defined in order for

A ma to satisfy the required value. Of course, this Am= can

be calculated by the cascaded connection of a finite num-

ber (NC) of transmission matrices consisting of the junction

matrices and uniform waveguide matrices at j = ~O.

One of the important parameters for expressing grating

characteristics is the fractional 3-dB bandwidth A~/~O (3-

dB bandwidth below A~=). This parameter, however, is

fixed uniquely through the defined structural dimensions,

and here the bandwidth is numerically obtained after the

calculation of the insertion characteristics. Since the field

distributions in the plane transverse to the z-axis varies

from frequency to frequency in 3-D dielectric waveguides

of the open type, following the method presented in Sec-

tion II-B for all the frequencies in the stopband consumes

much time in the above calculations. To reduce consuming

time, we calculate here the insertion losses by using the

dispersion curve obtained by the EDC method for all the

frequencies in the stopband except the center frequency ~O.

It has been confirmed that this approximation in obtaining

the propagation constants produces no significant dif-

ference in results insofar as we take account of a com-

pensation in which the EDC propagation constant ~0 varies
with frequency proportionally to the way that our theoreti-

cal one varies in ~0 and its vicinity (Matthaei et al. [4] used

a similar approach employing the “measured” value in-

stead of our “theoretical” value).

Following the procedures mentioned above, a CAD pro-

gram has been successfully developed. In this section,

however, we show the design charts of the DIG gratings

obtained from that program. An example (H= 0.6 WI,

nl =1.52, NC= 50) is shown in Fig. 8, where the solid

3Since the present method considers only the surface-wave modes, we
neglect here the effect of junction reactance due to the stored energy
around a junction.
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WI i~

Fig. 9. Design chart of DIG gratings. This chart is used along with Fig,

8 that defines the necessary H and w for uniform guide section, from
which neff is obtained (the points .4 and B define the necessary n,ff ’s

that reafize the specifications given by the circle on Fig. 8).

curves indicate the contours of the required maximum

attenuation A ~= (dB) in the W1-WJJVI plane and the

dotted curves show the corresponding Aj/fO in percent. In

the hatched region, the next higher-order propagating mode

E:z can couple with the E~l mode in the present structure,

and it is desirable to set the mid-stopband frequency away

from this region unless the additional stopbands due to

mode coupling [15] are considered positively.

Fig. 9 shows the dependence of the equivalent refractive

index n ~~~= ~/kO on both the guide width W and the

height H. Therefore, knowing, from Fig. 8, the guide

widths WI and Wz that satisfy the given grating specifica-

tions, one can obtain n ,~~zcorresponding to each W, from

Fig. 9. This n ~~~,finally defines the length di of each DIG

as follows:

d, = A0.(4n,~~1)-1, i=l,2. (11)

B. Design Example and Experiments

Let us consider here the following specifications:

fO=lOGHz (AO=30mm)

A ~== 30 dB

A f/fO = 1.92percent

and design the DIG grating by using Figs. 8 and 9. These

specifications can be realized by the point (WI, Wz/ WI)

indicated by the small circle on Fig. 8, i.e., WI = 0.667,

W2/ WI = 0.525 and H = 0.4, thereby yielding WI= 20 mm,
W2= 10.5 mm, and h =12 mm. On the other hand, the

points A( WI, H) and B( Wz, H) on Fig. 9 derive n ~~~,=

1.318 and n ,~~,= 1.204, respectively, thereby resulting in

dl = 5.69 mm and dz = 6.23 mm from (11). The grating

design has now been finished. In the above case, the

higher-order E& mode begins to propagate in the DIG

with WI from about 11 GHz.

J

o 0,5 10
d 2M

Fig. 10. Dependence of the maximum attenuation .4~U on dz /d (h =

12mm, WI= 20mm, and Wz = 10.5mm).

o

:10 - 50cefrugation5

:20 - — Experiment

----- Theory
z
~ 30 -
6 E; mode

40L J
92 94 96 98 10.0 102 104 10.6 108 110

Frequency (GHz)

Fig. 11. Design characteristic of the DIG grating and its measured
frequency characteristic (h = 12mm, WI= 20mm, W2= 10.5mm, d =

12mm, and dl /d2 = 1).

It is worthwhile to discuss here the change in A~= when

there are some deviations in d, from the designed values.

Fig. 10 is a result of the dependence of A ~z to dz/d with

the constant dl. In this case, the center frequency varies

slightly. Fig. 10 shows that the +5-percent deviations in

d2/d from the optimally designed value (0.523) produce a

reduction of only 1 percent or less in A ~=. Considering

the above, we have designed a trial grating with dl = .d~ =

6 mm, thereby yielding dJ/d = 0.5, which has a neghglble

4-percent reduction from the optimum value and also shifts

the center frequency to f. = 9.97 GHz.

Fig. 11 shows the attenuation characteristics of the de-

signed trial grating with NC= 50. The solid curve indicates

the measured characteristic and the dotted curve indicates

the theoretical one calculated from the designed parame-

ters. The measured center frequency, maximum attenua-

tion, and the fractional 3-dB bandwidth all show the
excellent agreement with the theory. Also, a surprisingly

good agreement between both curves can be found over the

whole frequency range of the stopband. However, we also

see a slight difference at the frequencies around the first

zero of insertion loss appearing on both sides of fo. The

authors currently have no definitive and reasonable way of

explaining this difference.
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V. CONCLUSIONS

A new and completely theoretical accurate method for

the design of dielectric image guide (DIG) gratings has

been presented. This method consists of two important

stages: one is the stage to calculate the dispersion char-

acteristics of DIG accurately and the other is one to derive

the scattering matrix at the junctions of two different sized

DIG’s completely theoretically. Although the method is

approximate since it takes into account only guided

surface-wave modes, the effectiveness of the present design

procedure has been demonstrated. We are currently study-

ing the design of more practical grating filters using the

present method.
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